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 The in-line response of a horizontal flexibly mounted cylinder in regular and random
 waves are reported in this paper .  Both theoretical analyses and experimental measure-
 ments have been carried out .  The theoretical predictions are based on the Morison
 equation which is solved by the incremental harmonic balance method .  The relationship
 between the response of the cylinder and the ratio of natural frequency of the cylinder to
 the wave frequency is first determined .  Experiments are then performed in a wave flume to
 determine the accuracy of the Morison equation in predicting the in-line response of the
 cylinder in regular and in random waves .  It has been verified that the Morison equation is
 valid under regular waves .  For random waves ,  it is found that the in-line response can be
 predicted accurately by a superposition of the response to wave components of dif ferent
 frequencies using the Morison equation ,  only when the ratio of wave height to cylinder
 diameter is small .  ÷   1997 Academic Press Limited

 1 .  INTRODUCTION

 T HE PREDICTION OF THE RESPONSE  of a flexibly mounted circular cylinder in wavy flows is
 a dif ficult problem due to the complexity of the fluid – structure interaction mechanisms .
 The study of the response of a circular cylinder in steady flows and oscillatory flows has
 attracted much attention ,  and the dynamics is now fairly well understood ,  a coherent
 account of which can be found in various textbooks and review papers [see ,  for
 example ,  Sarpkaya & Isaacson (1981) and Blevins (1990)] .  However ,  investigations in
 the response of a cylinder in waves where water particle velocity varies with water
 depth are still scarce .  In this paper ,  the study of the in-line response of a horizontal
 cylinder to both regular and random waves is reported .  Both theoretical analyses and
 experimental measurements have been carried out .  The theoretical predictions are
 based on the Morison equation which is solved by the incremental harmonic balance
 (IHB) method [see ,  for example ,  Lau & Cheung (1981) and Lau & Zhang (1992)] .  The
 incremental harmonic balance method is very ef fective for solving nonlinear dynamic
 problems .  The response (the horizontal displacement of the cylinder in this case) is
 represented by a Fourier series and all the Fourier coef ficients are computed .  Hence ,
 the relationship between resonance and the frequency ratio ,   v n  / v  ,  where  v n   is the
 natural angular frequency of the cylinder and  v   is the angular frequency of the wave ,
 can be easily identified .

 Williamson (1985) investigated the validity of using the Morison equation for
 nonstationary structures by comparing predictions with results from experimental
 measurements .  He reported that the forces on an elastically mounted horizontal
 cylinder and its in-line response in the sinusoidal flow of a U-tube showed good
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 agreement with predictions .  Lipsett & Williamson (1994) studied the two-dimensional
 response of a flexibly mounted horizontal rigid cylinder submerged in one arm of a
 U-tube .  The conclusion is that simple mathematical models based on the Morison
 equation are able to predict the cylinder response in a satisfactory fashion ,  even though
 the interaction between the response of the cylinder and the flow is very complicated .
 Borthwick & Herbert (1988) measured the forces and responses of a spring-mounted
 vertical cylinder in regular waves generated in a laboratory flume .  They also used the
 Morison equation to predict the in-line loading and response of the cylinder ,  and they
 found responses with frequencies at odd multiples of the wave frequency ,  in addition to
 the dominant component at the wave frequency .  Sumer  et al .  (1989) reviewed the
 results of a model test study to determine the hydroelastic vibrations of a marine
 pipeline placed in the vicinity of a scoured trench and exposed to regular and irregular
 waves .  They observed that the in-line movement of the pipe was generally larger for
 irregular waves .  Falco  et al .  (1991) investigated the ef fects of regular waves on a
 horizontal submerged cylinder oscillating freely in the vertical direction .  The conclu-
 sions are that the Morison equation ,  with coef ficients obtained in the case of waves ,  fits
 the experimental results for the first harmonic well ,  but for the case of  v n  / v  5  2 ,  the
 peak of the cylinder response appears in the cylinder natural frequency while the
 component at the wave frequency is negligible .

 The main objective of the present study is to investigate the possible extension of the
 Morison equation for predicting the response of elastically mounted structures to both
 regular and random waves .  The in-line response of a flexibly mounted horizontal
 cylinder placed in a wave flume is measured and compared with theoretical predictions
 based on the Morison equation .  Since it is revealed in the theoretical analysis that
 superharmonic resonance occurs at  v n  / v  5  3 ,  a transfer function relating the random
 wave spectrum to the cylinder response spectrum can be found only when the ratio of
 wave height to cylinder diameter is small .  The experimental results of the present study
 confirm that when such a condition is satisfied ,  the response of the cylinder in random
 waves can be predicted accurately using the Morison equation ,  by simply superposing
 the responses to dif ferent wave components .

 2 .  MATHEMATICAL MODELLING

 The equation used to describe the in-line response of an oscillating horizontal circular
 cylinder in waves is the Morison equation which can be written as follows ,  taking into
 account the ef fect of the wave-induced orbital motions (Chaplin 1985 ;  Faltinsen 1990) :

 Mx ̈  1  cx ~  1  k s x  5  1 – 2 r DLC D ( u  2  x ~  ) 4 ( u  2  x ~  ) 2  1  w  2  1  C M
 r π D  2 L

 4
 u ~  ,  (1)

 where  M  is the mass of cylinder plus the added mass  5  m  1  C a r π D 2 L / 4 ,  r   the fluid
 density ,   D  the cylinder diameter ,  and  L  the length of the cylinder ;   C a   is the added mass
 coef ficient ,   c  the structural damping of cylinder system ,   k s   the ef fective spring stif fness ,
 C D   the drag coef ficient ,  and  C M   the inertia coef ficient ;   x  is the cylinder displacement ,   u
 the horizontal velocity component of fluid particles ,  and  w  the vertical velocity
 component of fluid particles .  The overdot in equation (1) represents dif ferentiation
 with respect to  t .

 The ratio of  L / D  used in the experiments to be described later is about 18 and hence
 end ef fects can be neglected .  The horizontal and vertical fluid velocities  u  and  w ,  at
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 location  z  (measured upwards from the still water level) under a small amplitude wave
 of amplitude  1 – 2 H ,  angular frequency  v  ,  wave number  k  and water depth  d  are given by

 u  5
 gHk
 2 v

 cosh  k ( d  1  z )
 cosh  kd

 cos  v t ,  w  5  2
 gHk
 2 v

 sinh  k ( d  1  z )
 cosh  kd

 sin  v t ,  (2)

 where  g  is the gravitational acceleration .
 Equation (1) can be written in the following form :

 v  2 x ̈  1  g v x ~  1  v  2
 n x  2  a  ( u  2  v x ~  ) 4 ( u  2  v x ~  ) 2  1  w  2  1  b  sin  τ  5  0 ,  (3)

 where

 g  5  c  / M ;  v  2
 n  5  k s  / M ;

 a  5
 r DLC D

 2 M
 ;  b  5

 C M r π D 2 LgHk  cosh  k ( d  1  z )
 8 M  cosh  kd

 ;  τ  5  v t ;

 and dif ferentiation now is with respect to  τ   instead of  t .
 For simplicity ,  equation (3) is rewritten in the compact form :

 F  ( x ̈  ,  x ~  ,  x ,  τ  )  5  0 .  (4)

 Equation (4) is solved by the IHB (incremental harmonic balance) method .  Let  x 0  be
 an approximate solution and  x 0  1  D x 0  be a more accurate solution to equation (4) .
 Then ,  using the Taylor series expansion ,  we have

 F  ( x ̈  0  ,  x ~  0  ,  x 0  ,  τ  )  1
 Û F
 Û x ̈  0

 D x ̈  0  1
 Û F
 Û x ~  0

 D x ~  0  1
 Û F
 Û x 0

 D x 0  5  0  (5)

 with

 Û F
 Û x ̈  0

 5  v  2 ,

 Û F
 Û x ~  0

 5  g v  1  a v  4 ( u  2  v x ~  0 )
 2  1  w  2  1

 a v  ( u  2  v ~  x 2
 0 )

 4 ( u  2  v x ~  0 )
 2  1  w 2  ,

 and

 Û F

 Û x 0
 5  v  2

 n .

 Representing  x 0  by a Fourier series ,

 x 0  5  a 0  1  O N
 n 5 1

 ( a n  cos  n τ  1  b n  sin  n τ  ) ,  (6a)

 then we have

 x ~  0  5  O N
 n 5 1

 ( 2 na n  sin  n τ  1  nb n  cos  n τ  ) ,  (6b)

 x ̈  0  5  O N
 n 5 1

 ( 2 n 2 a n  cos  n τ  2  n 2 b n  sin  n τ  ) ,  (6c)

 and

 D x 0  5  D a 0  1  O N
 n 5 1

 ( D a n  cos  n τ  1  D b n  sin  n τ  ) .  (6d)
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 After substituting equations (6a) to (6d) in equation (5) ,  we have

 Û F
 Û x ̈  0

 F O N
 n 5 1

 2  n 2 ( D a n  cos  n τ  1  D b n  sin  n τ  ) G  1
 Û F
 Û x ~  0

 F O N
 n 5 1

 ( 2 n  D a n  sin  n τ  1  n  D b  cos  n τ  ) G
 1

 Û F
 Û x 0

 F D a 0  1  O N
 n 5 1

 ( D a n  cos  n τ  1  D b n  sin  n τ  ) G  5  2 F  ( x ̈  0  ,  x ~  0  ,  x 0  ,  τ  ) ,  (7)

 or

 Û F
 Û x 0

 D a 0  1  O N
 n 5 1

 S  Û F
 Û x 0

 cos  n τ  2
 Û F
 Û x ~  0

 n  sin  n τ  2
 Û F
 Û x ̈  0

 n 2  cos  n τ D  D a n

 1  O N
 n 5 1

 S  Û F
 Û x 0

 sin  n τ  1
 Û F
 Û x ~  0

 n  cos  n τ  2
 Û F
 Û x ̈  0

 n 2  sin  n τ D  D b n  5  2 F  ( x ̈  0  ,  x ~  0  ,  x 0  ,  τ  ) .  (8)

 Applying the Galerkin method ,  i . e .,  multiplying equation (8) in turn by 1 ,  cos  τ  ,
 cos  2 τ  ,  .  .  .  ,  sin  N τ  ,  and integrating with respect to  τ   between the limits of 0 and 2 π  ,  a
 set of (2 N  1  1) equations for the unknown coef ficients  D a 0  ,  D a 1  ,  D a 2  ,  .  .  .  ,  D b N   can be
 found .  Hence ,  a better solution ,   x 0  1  D x 0 ,  is obtained from the initial approximate

 solution ,   x 0  .  The computation of the Fourier coef ficients of 
 Û F
 Û x ~  0

  can be facilitated by

 using the Fast Fourier Transform .  The procedure is repeated a number of times until a
 solution of desired accuracy is obtained .  In the present calculation ,  the iteration is
 stopped when the following criterion is satisfied :

 U max( D a 0  ,  D a 1  ,  .  .  .  ,  D b N )
 max( a 0  ,  a 1  ,  .  .  .  ,  b N )

 U  ,  10 2 8 .  (9)

 It is found that the IHB method is very ef fective for solving equation (5) ,  and any
 reasonable initial trial solution  x 0  would converge rapidly to the true solution .

 The numerical solution of equation (1) can be simplified by the linearization of the
 drag term as given by Malhotra & Penzien (1970) resulting in the following
 approximate equation of motion (the ef fect of the vertical fluid velocity is also
 neglected) :

 Mx ̈  1  ( c  1  1 – 2 r DLC D 4 8 / π s r ) x ~  1  k s x  5  1 – 2 r DLC D 4 8 / π s r u  1  C M
 r π D  2 L

 4
 u ~  ,  (10)

 where

 s r  5 – ( u m a x  2  b 1 v  ) 2  1  ( a 1 v  ) 2

 2
 .

 Since  s r   is related to the unknown function  x ,  equation (10) has again to be solved by
 iteration using the IHB method .  However ,  the amount of computations is less than that
 required for solving equation (5) .  It can be seen from Figures 1 and 2 that the
 quasi-linear equation (10) can give a good solution to the problem .  The values of the
 various parameters such as  c , k s  , C D   and  C M   adopted in equations (1) and (10) to give
 Figures 1 and 2 are the same as that of the experimental cylinder described later in
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 Figure 1 .  Comparison between quasi-linear and nonlinear solutions for  H / D  5  0 ? 048 . H  5  0 ? 004  m ,
 D  5  cylinder diameter ;   A 1 (  5  4 a 2

 1  1  b 2
 1 )  5  amplitude of 1st harmonic ,  and  A 3 (  5  4 a 2

 3  1  b 2
 3 )  5  amplitude of 3rd

 harmonic .

 Section 3 .  In this paper ,  all theoretical solutions are obtained from solution of the
 nonlinear equation of motion (1) ,  unless explicitly stated to the contrary .

 3 .  MEASUREMENT OF IN-LINE OSCILLATION

 3 . 1 .  M EASUREMENT   OF  P ARAMETERS   c , k s  , C D   AND   C M

 The experimental set-up is shown schematically in Figure 3 .  The cylinder used in the
 study of the in-line response is made from a plastic tube with an outside diameter of
 82 ? 6  mm and a length of 1 ? 45  m .  The cylinder is positioned horizontally ,  with its centre
 at a distance 0 ? 195  m below the water surface ,  in a 1 ? 5  m wide wave flume ,  by a vertical
 steel plate having a cross-section of 100  mm  3  10  mm at each of its two ends .  The steel
 plates are in turn fixed at their upper ends to a steel I-beam above the wave flume .

 The sensors are located between the cylinder and the vertical steel plates and can be
 either very stif f for measurement of wave forces on a fixed cylinder or elastic for
 measurement of in-line responses to wave motions .  The transverse movement is
 suppressed .  The sensors are a pair of stainless steel plates with waterproof strain
 gauges fixed to them for deflection measurement .  The stainless steel plates for the
 in-line force sensors are shorter and thicker than that for the displacement sensors to
 provide the necessary stif fness .  The wave motion is measured by wave height gauges .
 The wave probe of the wave-height gauge consists of a pair of stainless steel rods which
 are immersed to such a depth that they are always in contact with the water surface
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 Figure 2 .  Comparison between quasi-linear and nonlinear solutions for  H / D  5  1 ? 816 . H  5  0 ? 15  m ,
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 under wave measuring conditions .  The mass of the cylinder is  m  5  7 ? 13  kg .  The
 structural damping  c  and spring stif fness  k  are first determined by allowing the cylinder
 to oscillate freely in air .  The time history of the free oscillation is shown in Figure 4 .
 From this time history ,  it is found that  c  5  1 ? 8  N  s / m and  k s  5  851  N / m .

 The drag coef ficient ,   C D  ,  is then determined by allowing the cylinder to oscillate
 freely in still water .  The time history of one such oscillation is shown in Figure 5 .  It is
 found that the natural frequency of the cylinder  v n  5  6 ? 9  rad / s and  M  5  k s  / v  2

 n  5
 17 ? 85  kg .  The drag coef ficient then is obtained from the following expression :

 C D  5

 3 T d c S A 0

 A 9
 2  exp S cT d

 4 M
 D D

 8 r DLA 0 S exp S cT d

 4 M
 D  2  1 D

 5  2 ? 65 ,  (11)

 where  A 0  is the initial displacement of cylinder (i . e .  at  t  5  0) ,   A 9  the displacement of
 cylinder at  t  5  1 – 2 T d  ,  and  T d   is the period of oscillation in still water .

 The derivation of equation (11) is given in the Appendix .  It has been assumed that
 both  c  and  k s   are the same in air and water .  Reynolds number and the Keulegan –
 Carpenter number corresponding to the maximum velocity of the cylinder in the first
 half cycle of oscillation are 3290 and 0 ? 38 ,  respectively .  This method of determining  C D

 is more accurate than the commonly used method of measuring wave forces ,  because
 the drag force is very small for small values of the ratio of wave height to cylinder
 diameter ,  as is the case in the present series of experiments ( H  / D  <  1 / 20) .  The value of
 C D   thus determined can be used later to determine the response of the cylinder in
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 Figure 3 .  Experimental set-up .

 waves ,  because the Reynolds number under which  C D   is determined is close to that of
 the wave experiments .

 The inertia coef ficient ,   C M ,  was determined by measuring the in-line force ,   F x ,  on the
 cylinder due to regular waves .  Williamson (1985) showed that for an elastically
 mounted cylinder in an oscillatory flow ,  the values of  C D   and  C M   are not significantly
 removed from that of the fixed cylinder ,  except near resonance ( v  / v n  .  1) ,  and
 advised that the change in the coef ficients due to the response of the structure should
 be taken into account near resonance .  Hence errors in the prediction of cylinder
 response are expected near resonance if  C M   is measured for a fixed cylinder in waves .
 The experimental results are shown in Figure 6 .  The following expression based on the
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 Fourier averaging technique over one cycle [see ,  for example ,  Chakrabarti (1987)] is
 used for the calculation of  C M :

 C M  5  2

 2
 T
 E T

 0
 F x  sin  v t  d t

 r
 π D 2 L

 4
 gHk

 2
 cosh  k ( d  1  z )

 cosh  kd

 .  (12)
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 Figure 5 .  A record of free vibration in water .
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 Figure 6 .  Variation of  C M   with the Keulegan – Carpenter number .

 In the response computations described below ,  the value of  C M   is taken as 2 ? 1 .

 3 . 2 .  R ESPONSE   OF  C YLINDER   IN  R EGULAR   AND  R ANDOM  W AVES

 Both the computed and experimental results for the amplitudes  A 1 (  5  4 a 2
 1  1  b 2

 1 ) of the
 response at excitation frequency in regular waves at a wave height of 0 ? 004  m are
 shown in Figure 7 .  (Theoretical values of  A 3  are shown in Figure 1 . ) It is observed that
 the computed values agree very well with the experimental results .  The cylinder
 primarily oscillates at the same frequency as the water waves and resonance occurs at
 the natural frequency of the cylinder  v n  5  6 ? 9  rad / s .  The amplitude of the response of
 the cylinder at resonance is about 2 ? 2 times the wave height .  Except when  v   is in the
 vicinity of  1 – 3 v n  ,  the other Fourier coef ficients of the cylinder response are very small ,
 about two orders of magnitude smaller than  A 1  .  At  v  5  1 – 3 v n  ,  the amplitude of the third
 harmonic ,   A 3 (  5  4 a 2

 3  1  b 2
 3 ) ,  is about  A 1 / 5 and a record of the oscillation of the cylinder

 at this frequency is shown in Figure 8 to illustrate this superharmonic resonance .
 The response of the cylinder in random waves has also been investigated using the

 JONSWAP  spectrum .  Typical records of the input random wave ,  the resulting dynamic
 response of the cylinder and the response spectrum ,  as well as the spectrum of the free
 surface elevation  h  ,  are shown in Figures 9 ,  10 and 11 ,  respectively .  The input random
 wave shown in Figure 9 corresponds to the following wind conditions :  fetch  5  5  km ;
 wind speed  5  1  m / s and model scale  5  1 .  The details for the transformation of wind
 speed and fetch into spectrum parameters can be found in Houmb & Overvik (1976) .
 The theoretical spectra of cylinder displacement ,   G x (  f  ) ,  are synthesized from com-
 puted responses in regular waves of dif ferent frequencies ,  assuming the existence of a
 transfer function  H (  f  ) ,  i . e .   G x (  f  )  5  u H (  f  ) u 2   G h (  f  ) ,  where  G h (  f  ) is the wave spectrum .

 It is known from the theoretical analysis of the system under regular waves that ,
 when the ratio of  H  / D  5  0 ? 048 ,  the amplitude of the third harmonic ,   A 3 ,  is only about
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 1 / 5 of  A 1  even at superharmonic resonance ,   f  5  1 – 3 f n  ,  and hence  A 2
 3  is at most 4% of  A 2

 1 .
 Furthermore ,  the value of  A 3  at  1 – 3 f n   is only about 1 / 120 of  A 1  at  f n  ,  and the
 corresponding ratio of the square of the amplitudes is about 1 / 14  400 .  Thus if the ratio
 of  H  / D  is small ,  the nonlinear ef fects are weak and the response of the cylinder to
 random wave excitation can simply be obtained by superposing the contributions from
 individual wave components ,  as described below .
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 Firstly ,  the surface elevation ,   h  ,  is expressed as

 h  5  O n
 i 5 1

 H i

 2
 cos( k i x  2  v i t  1  f i ) .  (13)

 The amplitudes of the first harmonic  A 1 i   of the dynamic response corresponding to
 each wave component are calculated by solving equation (1) using the IHB method .
 The spectrum of the dynamic response of the cylinder is then given by

 G x (  f i )  5
 A 2

 1 i

 2  D f
 ,  (14)

 where  D f  is the chosen frequency-band size .
 It can be seen from Figure 11 that the calculated spectrum based on superposition of

 individual wave components agrees well with the measured spectrum ,  except that the
 calculated peak is higher than the corresponding measured peak .  For higher  H  / D
 ratios ,  the nonlinear ef fect cannot be neglected due to an increase of the amplitude of
 the third harmonic  A 3  ,  and hence the method of superposition cannot be used .
 Similarly ,  Figure 12 gives the spectra of the cylinder response and the free surface
 elevation for the case of fetch  5  10  km ,  wind speed  5  2 ? 5  m / s and model scale  5  9 .  The
 calculated and measured spectra also match well .

 4 .  CONCLUSIONS

 In the range of Keulegan – Carpenter number investigated here (KC  ,  7) ,  the present
 study confirms the validity of the Morison equation for predicting the in-line response
 of a flexibly mounted horizontal cylinder in regular waves .  The theoretical predictions
 of the cylinder response obtained by solving the Morison equation using the
 incremental harmonic balance method agree well with experimental measurements .
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 Because of the occurrence of superharmonic resonance at  v n  / v  5  3 ,  the in-line
 response in random waves can be predicted using the Morison equation by a
 superposition of the responses to dif ferent wave components only when the ratio of
 wave height to cylinder diameter is small .  The possibility of using the Morison equation
 for the prediction of two-dimensional responses requires further investigation ,  due to
 the complex interaction between oscillations in-line and transverse with the velocity
 vector .
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 APPENDIX

 The derivation of equation (11) starts with the following equation of motion :

 Mx ̈  1  cx ~  1  k s x  5  2 1 – 2 r DLC D  u x ~  u  x ~  ,  (A1)

 or

 x ̈  1  v  2
 n x  5  2 g  ( x ~  1  a  u x ~  u  x ~  ) ,  (A2)

 where

 g  5  c  / M ,  a  5  1 – 2 r DLC D  / c ,  and  v  2
 n  5  k s  / M .

 Let the solution of equation (A2) be

 x  5  A ( t )cos[ v n t  1  f  ( t )] ,  (A3)

 then

 x ~  5  A ~  cos[ v n t  1  f  ]  2  A v n  sin[ v  n t  1  f  ]  2  A f ~  sin[ v n t  1  f  ] .  (A4)

 Because the nonlinear vibrarion is weak ,  both  A ~    and  f ~    are small with respect to  A  since they
 vary very slowly with time ;  therefore ,  we can let

 A ~  cos[ v n t  1  f  ]  2  A f ~  sin[ v n t  1  f  ]  5  0 .  (A5)

 Hence ,
 x ~  5  2 A v n  sin[ v n t  1  f  ] ,  (A6)

 x ̈  5  2 A ~  v n  sin[ v n t  1  f  ]  2  A v  2
 n  cos  [ v n t  1  f  ]  2  A v n f ~  cos[ v  n t  1  f  ] .  (A7)

 Substituting equation (A3) ,  (A6) and (A7) into equation (A2) ,  yields

 2 A ~  v n  sin  c  2  A f ~  v n  cos  c  5  g  ( A v n  sin  c  1  a A 2 v  2
 n  u sin  c  u  sin  c  ) ,  (A8)

 where  c  5  v n t  1  f  .
 From equations (A5) and (A8) ,  we find

 A ~  5  2 g  ( A  sin  c  1  a A 2 v n  u sin  c  u  sin  c  u  sin  c  )  sin  c .  (A9)

 It is dif ficult to find an analytical solution for equation (A9) .  An approximate solution is found
 by taking

 A ~  5  2
 g

 2 π  E 2 π

 0
 ( A  sin  c  1  a A 2 v n  u sin  c  u  sin  c  )sin  c  d c

 5  2
 g

 2
 A  2

 4 g a v n

 3 π
 A 2 .  (A10)

 Integrating equation (A10) and using the initial condition  A  5  A 0  at  t  5  0 ,  gives

 A  5
 g A 0

 S g  1
 8 A 0 g a v n

 3 π  D e g t /2  2
 8 A 0 g a v n

 3 π

 .  (A11)
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 If  A  5  A 9  at  t  5  1 – 2 T d  ,  then we have

 a  5

 3 T d S A 0

 A 9
 2  e g T d /4 D

 16 A 0 (e g T d /4  2  1)
 ,

 or

 C D  5

 3 T d c S A 0

 A 9
 2  exp S cT d

 4 M
 D D

 8 r DLA 0 S exp S cT d

 4 M
 D  2  1 D  .  (A12)


